

Nanomaterialien in Lebensmittelverpackungen

Dr. Karla Pfaff

Dr. Jutta Tentschert

Verordnung (EG) 1935/2004

⇒ Die Anforderungen dieser Verordnung gelten auch für die Verwendung von Nanomaterialien!

Artikel 3 - Allgemeine Anforderungen

- (1) Materialien und Gegenstände, einschließlich aktiver und intelligenter Materialien und Gegenstände, sind nach guter Herstellungspraxis so herzustellen, dass sie unter den normalen oder vorhersehbaren Verwendungsbedingungen keine Bestandteile auf Lebensmittel in Mengen abgeben, die geeignet sind,
 - die menschliche Gesundheit zu gefährden oder
 - eine unvertretbare Veränderung der Zusammensetzung der Lebensmittel herbeizuführen oder
 - eine Beeinträchtigung der organoleptischen Eigenschaften der Lebensmittel herbeizuführen.
- (2) Kennzeichnung, Werbung und Aufmachung der Materialien und Gegenstände dürfen den Verbraucher nicht irreführen.

Verordnung (EG) 1935/2004

Artikel 11 - Gemeinschaftszulassung

(5) Der Antragsteller oder der Unternehmer, der den zugelassenen Stoff oder Materialien oder Gegenstände, die den zugelassenen Stoff enthalten, verwendet, unterrichtet die Kommission unverzüglich über neue wissenschaftliche oder technische Informationen, die die Bewertung der Sicherheit des zugelassenen Stoffes in Bezug auf die menschliche Gesundheit berühren könnten. Falls erforderlich, überprüft die Behörde die Bewertung.

Verordnung (EG) 1935/2004

Artikel 2 - Definitionen

- Aktive Materialien und Gegenstände:
 - Materialien und Gegenstände, die dazu bestimmt sind, die Haltbarkeit eines verpackten Lebensmittels zu verlängern oder dessen Zustand zu erhalten bzw. zu verbessern. Sie sind derart beschaffen, dass sie gezielt Bestandteile enthalten, die Stoffe an das verpackte Lebensmittel oder die das Lebensmittel umgebende Umwelt abgeben oder diesen entziehen können.
- Intelligente Materialien und Gegenstände:
 - Materialien und Gegenstände, mit denen der Zustand eines verpackten Lebensmittels oder die das Lebensmittel umgebende Umwelt überwacht wird

Sollen Nanomaterialien in Materialien und Gegenständen für den Lebensmittelkontakt eingesetzt werden, sind deshalb erforderlich:

- Kenntnisse der physikalisch-chemischen Eigenschaften des verwendeten Nanomaterials
- Kenntnisse der Migration in Lebensmittel
 (einschließlich möglicher Auswirkungen auf den Übergang anderer Substanzen, z. B. katalytische Effekte, "Schlepper"-Effekte)
- Kenntnisse der toxikologischen Eigenschaften des verwendeten Nanomaterials

Einsatzgebiete

- Ausrüstung von Oberflächen (z.B. Antimikrobielle Beschichtung)
 Bsp.: Nano-Silberbeschichtung
- Verbesserte mechanische und technische Eigenschaften Bsp.: Nano-Ton; Nano-Titannitrid
- Barrierewirkung gegenüber Gasen und Wasserdampf Bsp.: Nano-Ton
- Spezifische Absorption von Gasen
 Nano-Ton in Kombination mit Metalloxiden (???)
- UV-Schutz bei transparenten Materialien Bsp.: Nano-Titandioxid
- Aktive und intelligente Materialien
 Bsp.: Nano-Ton mit Metalloxiden

Unterscheidung zwischen:

a) <u>freien Nanopartikeln</u>

 Bsp.: Nachträgliche Oberfächenbehandlung durch Verbraucher z. B. mit Nano-Silber (Tücher, Sprays)

b) <u>an Oberflächen gebundenen Nanopartikeln</u>

♦ Bsp.: mit Silberteilchen behandelte Polypropylen-Behälter oder Innenauskleidungen von Kühlschränken SiO_x-Beschichtung von PET-Flaschen

c) <u>in Matrices eingebetteten Nanopartikeln</u>

 Bsp.: Nano-Ton in Polymer-Schicht, als innerste Schicht von Mehrschichtfolien

1. "Traditionelle" Materialien, die Nanomaterialien enthalten:

Verpackungsmaterialien

Komposit aus Polyamiden (Nylon) + Nano-Ton-Partikeln (Nanocor Ltd.)

eingesetzt für:

Flaschen (mehrschichtig), Folien, Container, beschichtetes Papier & Karton

Handelsnamen:

- Imperm® (ColorMatrix Europe)
- Durethan® KU2-2601 (LANXESS Deutschland GmbH)
- Aegis™ NC (Honeywell Polymers)

Biologisch abbaubares Polymer-Nanomaterial (Komposit aus Stärke und / oder Cellulose + Nano-Tonpartikel als Additiv) eingesetzt für: Schalen

Materialien, die bei der Herstellung und Verarbeitung von Lebensmitteln verwendet werden

Nanofiltration (Nanokeramik, Nano-Silizium)

OilFresh, USA: eingesetzt für Gewerbe-Fritteusen

Universität Nebraska, Lincoln, USA: Kaffee-Filterpapier (Coffein-Entfernung)

2. Nanomaterialien in intelligente Verpackungen ("Nanosensoren"):

Druckfarben, die auf Nanopartikeln basieren: Inkbyte ®

Nanoskalige Pigmente, Farben,

Gravuren

eingesetzt als:"Printed Digital Content"

Reaktive Nanoschichten: Raflatac® Pro Label von UPM

Raflatac

eingesetzt als:

Schwefelwasserstoffindikator

3. Nanomaterialien in aktiven Verpackungen ("Scavenger") ????:

Kombination von Nanokomposit- Barriere und "Sauerstoff- Scavenger"

Aegis™ OX (Honeywell Polymers, USA) Komposit aus Polyamid (Nylon) + Nano-Ton-Partikeln eingesetzt für Bier-Mehrschichtflaschen

Anorganische Verbindungen - Siliciumdioxid

Siliciumdioxid (SiO_x)

nanopartikuläre Oberflächenbeschichtung für Kunststoffflaschen < 100 nm

♦ Herstellung: in situ aus Hexamethyldisiloxan und Hexamethyldisilazan

Verwendung: als Gasbarriere an Innenseite von Polyethylenterephthalat(PET) -

Flaschen

Siliciumdioxid wurde als Nanopartikel für diese Applikation von der EFSA bewertet (The EFSA Journal (2007) 452 - 454)

Titannitrid

Verwendung als Additiv in Materialien für den Lebensmittelkontakt; gegenwärtig von der EFSA bewertet (EFSA-Q-2006-323)

Anorganische Verbindungen - Silber

Silberverbindungen – makroskalige Form

Verwendung: Oberflächenbiozid in Kunststoffen für den Lebensmittelkontakt

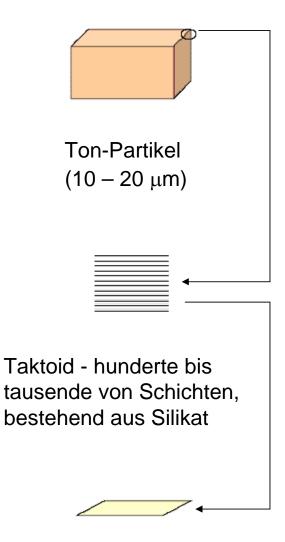
Wirkprinzip: Freisetzung von Silberionen

Bewertung: EFSA (The EFSA Journal (2004) 65, 1-17 & (2005) 201, 1-28))

Silber – nanoskalige Form

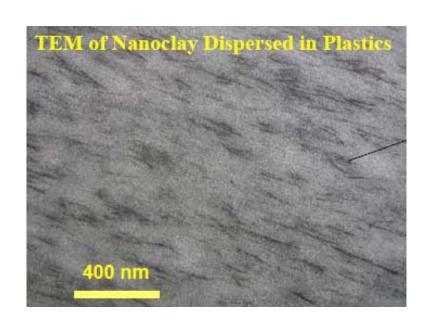
Verwendung: Oberflächenbiozid bzw. antimikrobieller Wirkstoff

Wirksamkeit: "Nano-Silber"-Partikel an der Oberfläche

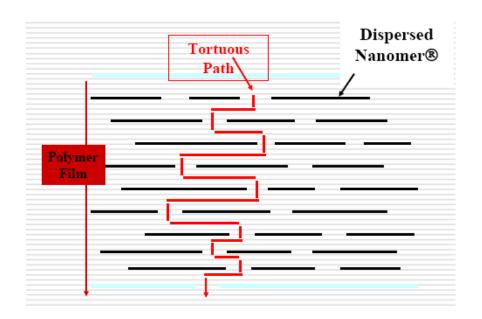

Bewertung:

- Keine EFSA-Bewertung für elementares Silber und Silber-Nanopartikel
- Nicht in nationalen Listen für Stoffe zur Herstellung von Materialien für den Lebensmittelkontakt aufgeführt

Anorganische Verbindungen – Nano-Ton


Montmorillonit

- Nanoskalige Tonpartikel, eingebettet in Kunststoff
- Einsparung von Material
- Erhöhte Steifheit ohne den Verlust an Flexibilität
 - ⇒ Verbesserung der mechanische Eigenschaften
 - ⇒ Erhöhte chemische und thermische Stabilität
 - ⇒ Erhöhte räumliche Stabilität
- Verbesserung der Barriereeigenschaften (Verlängerung der Haltbarkeit)
- UV-Schutz in Kombination mit Nano-Oxiden, wie TiO₂


Einzelschicht 1 nm dick

Anorganische Verbindungen - Nano-Ton

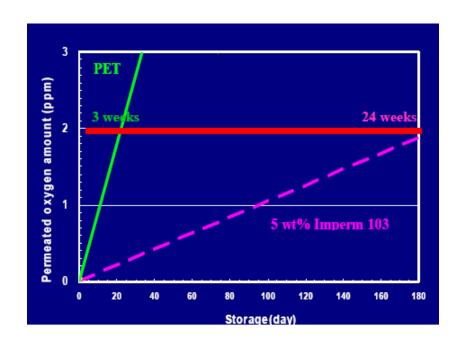
Nano-PA6

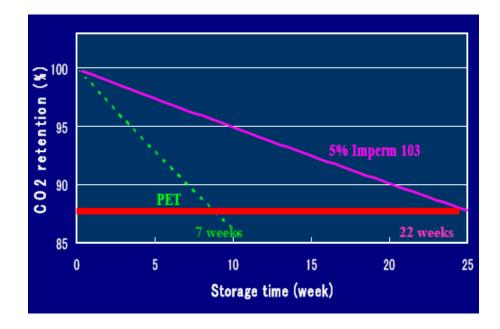
- erstes Ton-Kunststoff-Nanokomposit
- ♦ ~ 36 Tonnen / Tag
- Patentierter in situ Polymerisations-Prozess

Verbesserung der Barriereeigenschaften:

- Tonplättchen erzeugen gewundenen Pfad durch Polymer
 - ⇒ Bei gleicher Barrierefunktion & Stabilität weniger Polymer nötig
 - ⇒ 10% Einsparung an Gewicht

Quelle: www.nanocor.com/tech_papers/Nano-2004.pdf

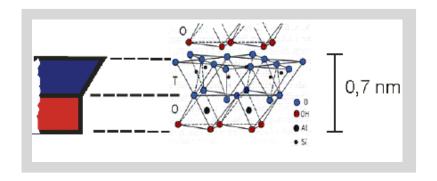



Anorganische Verbindungen - Nano-Ton

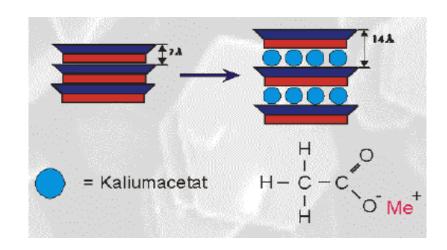
PET/Multilayer Flaschen

O₂ sensitive Produkte

CO₂ sensitive Produkte



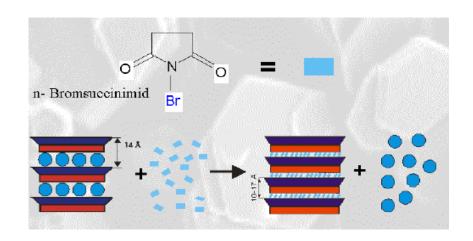
Quelle: www.nanocor.com/tech_papers/Nano-2004.pdf



Herstellung von Nanokompositen auf Kaolinitbasis

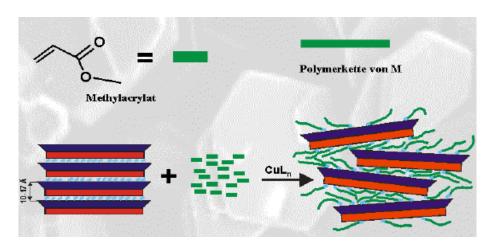
Kaolinit: Vereinfachte Darstellung
(Links Piktogramm – rechts atomare Struktur)

1. Schritt: Einlagerung von Kaliumacetat in Kaolinit



(Kaliumacetat "öffnet" die Zwischenschichten des Kaolinits)

Quelle: Patentantrag FZK-EM: 43/03


Herstellung von Nanokompositen auf Kaolinitbasis

2. Schritt: Austausch

die Aufdehnung mit Kaliumacetat ermöglicht es, im Austausch Initiatormoleküle für Polymerisationsreakionen einzulagern

3. Schritt: "in situ" Polymerisation und Delamination

durch Anregung wird die Polymerisation gestartet,

Polymerketten wachsen in situ, damit Delamination des Kaolinits

Quelle: Patentantrag FZK-EM: 43/03

1. Exposition?

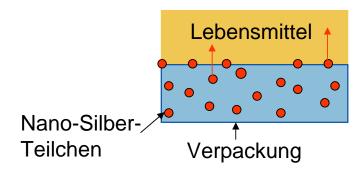
In welchem Umfang gelangen Nanopartikel durch Migration oder durch Abrieb in Lebensmittel?

2. Toxikologische Bewertung?

Exposition durch

Migration

nur vereinzelt Daten verfügbar


♦ Nano-Ton Exposition im ppb Bereich

♦ Nano-Silber Exposition im ppm Bereich

(Quelle: Q. Chaudhry, Presentation at the EMERGNANO workshop, October 2008, CSL, York)

Abrieb

keine Daten verfügbar

Abschätzung des Übergangs von Nano-Silber

Annahmen:

Kleine Vorratsdose, einschichtig, aus Polypropylen. Wandstärke 2 mm, mit Nano-Silber (Teilchengröße: 20 nm, Einsatzmenge 5 %), Langzeitzeitlagerung bei Raumtemperatur

- Migration:

Modellierung der Migration mit Migratest©EXP: 0,44 ng kg⁻¹

(für ein rel. Molekulargewicht der Partikel von 10000 g mol-1, rel. Molekulargewicht des Silber-Nanopartikels beträgt 3·107 g mol-1)

- Abrieb:

in einer 10 nm-Schicht: 4,5 mg Silber-Nanopartikel/dm²

> 1 Mrd. Partikel/dm² stehen theoretisch zur Verfügung

Toxikologische Bewertung

Die Daten zur toxikologischen Bewertung von Nano-Partikeln bei oraler Aufnahme sind unzureichend.

Ergebnis

- Nanomaterialien dürfen für die Verwendung in Materialien und Gegenständen für den Lebensmittelkontakt nur nach vorheriger Risikobewertung eingesetzt werden.
- Die Übertragung von Bewertungen für die Verwendung von Substanzen in herkömmlicher Größe ist nicht übertragbar auf ihre Verwendung in nanopartikulärer Form.
- Es bestehen Wissenslücken bei der Expositionsabschätzung und der Identifizierung & Charakterisierung des Gefährdungspotentials.
- Besondere Probleme bestehen in den Bereichen, in denen es keine Regelungen auf der Grundlage von Positivlisten gibt.
- Eine abschließende Risikobewertung ist derzeit nicht möglich.
- Bei der Verwendung von Nanomaterialien in Innenschichten von Verbundsystemen aus Kunststoffschichten ist keine Exposition zu erwarten.
- Durch die irreführende Bewerbung mit dem Begriff "Nano" ist die Marktübersicht ist schwierig.
- Die Auswirkungen der Verwendung von Nanomaterialien auf das Recycling ist nicht geprüft.
- Es besteht erheblicher Forschungsbedarf!

Forschungsbedarf

- Daten zur toxikologischen Bewertung von Nano-Partikeln bei oraler Aufnahme
- Entwicklung von Methoden, mit denen der Übergang von Nanopartikeln in komplexe Matrices, wie Lebensmittel, bestimmt werden kann
- Entwicklung von Referenzstandards als Voraussetzung für validierte analytische Verfahren.
 Für Nanopartikel stehen diese derzeit nur für Gold zur Verfügung (NIST, SRM: Gold Nanoparticles, Nominal 10 nm, 30 nm, 60 nm Diameter)
- Entwicklung von Szenarien und Simulanzien zur Prüfung des Abriebs von der Oberfläche.

DANKE FÜR IHRE AUFMERKSAMKEIT

Dr. Karla Pfaff

Dr. Jutta Tentschert

Bundesinstitut für Risikobewertung

Thielallee 88-92 • D-14195 Berlin

Tel. 0 30 - 84 12 - 3669 • Fax 0 30 - 84 12 - 36 85

- 3473

karla.pfaff@bfr.bund.de • www.bfr.bund.de

jutta.tentschert@bfr.bund.de